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ABSTRACT
Developing Big Data Analytics workloads often involves trial and

error debugging, due to the unclean nature of datasets or wrong

assumptions made about data. When errors (e.g., program crash,

outlier results, etc.) arise, developers are often interested in identify-

ing a subset of the input data that is able to reproduce the problem.

BIGSIFT is a new faulty data localization approach that combines

insights from automated fault isolation in software engineering and

data provenance in database systems to find a minimum set of failure-

inducing inputs. BIGSIFT redefines data provenance for the purpose

of debugging using a test oracle function and implements several

unique optimizations, specifically geared towards the iterative nature

of automated debugging workloads. BIGSIFT improves the accu-

racy of fault localizability by several orders-of-magnitude (∼103
to 10

7×) compared to Titian data provenance, and improves perfor-

mance by up to 66× compared to Delta Debugging, an automated

fault-isolation technique. For each faulty output, BIGSIFT is able to

localize fault-inducing data within 62% of the original job running

time.
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• Software and its engineering → Cloud computing; Software
testing and debugging; • Information systems → Data cleaning;

Data provenance;
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1 INTRODUCTION
Data-Intensive Scalable Computing (DISC) systems such as

Google’s MapReduce [18], Apache Spark [49], and Apache

Hadoop [1] draw valuable insights from massive data sets to help

make business decisions and scientific discoveries. Similar to other

software development platforms, developers often deal with pro-

gram errors and incorrect inputs e.g., unclean data or making the

wrong assumptions about the data. Furthermore, DISC systems pro-

vide increased expressiveness through user-defined functions, which

consequently increases the complexity of debugging. It is therefore

crucial to equip these developers with toolkits that can better pin-

point the root cause of an error. Otherwise, they might be forced to

resort to an extremely lengthy and expensive process of manual trial

and error debugging.

When a failure or incorrect result is generated (e.g., outlier), the

programmer may want to pinpoint the root cause by investigating

the relevant subset of failure-inducing input records. One possible

approach is to use Data Provenance (DP) to trace back to the input

records responsible for inducing the error [6, 7, 17, 24, 26, 36] or

generate data summaries of tracing queries [5, 35]. Another approach

is to perform a systematic search on the input dataset using a test ora-

cle function to isolate a minimum set of fault-inducing input records,

which is a technique called Delta Debugging (DD) [51]. However,

these approaches are not suitable for debugging DISC workloads

for several reasons. First, DD does not consider the semantics of

data-flow operators such as join and group-by, and thus cannot

prune input records known to be irrelevant. Second, DD’s search

strategy is iterative: it re-runs the same program using different sub-

sets of the input records, which is prohibitively expensive for tens

or even hundreds of iterations on large datasets. Third, DP over-

approximates the scope of failure-inducing inputs by considering

that all intermediate inputs mapping to the same key contribute to

the erroneous output.

To overcome these limitations, we present BIGSIFT, a new ap-

proach that brings automated debugging to a reality in DISC en-

vironments. Given a test function, BIGSIFT automatically finds a

minimum set of fault-inducing input records responsible for a faulty

output. We re-define data provenance [28] for the purpose of debug-

ging by leveraging the semantics of data transformation operators.

BIGSIFT then prunes out input records irrelevant to the given faulty

output records, significantly reducing the initial scope of failure-

inducing records before applying DD. We also implement a set

of optimization and prioritization techniques that uniquely benefit

the iterative nature of DD workloads. For example, we overlap the

backward trace of multiple faults, based on the insight that a sin-

gle culprit record may propagate to multiple output records. We
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implement bitmap based memoization and adaptive local job sched-

uling to speed up the debugging time. Our current implementation

targets Apache Spark [49], a state of the art DISC system, but it

can be generalized to any data processing system that supports data

provenance.

In our evaluation, we compare BIGSIFT with baseline DD in terms

of response time, and DP in terms of minimizing failure-inducing

input records. We construct our own debugging benchmarks by

porting the PUMA benchmark to Spark [4]. In addition to seeding

fault-inducing records in the input data, we inject programming er-

rors in code. This is to demonstrate BIGSIFT’s capability to find

faulty data records, where the notion of faulty data changes depend-

ing on coding errors. Such faults cannot be found by data cleaning

techniques that do not consider interaction between input data and

code.

In comparison to using DP alone, BIGSIFT finds a more concise

subset of fault-inducing input records, improving its fault localiza-

tion capability by several orders of magnitude. In most subject pro-

grams, data provenance stops at identifying failure inducing records

at the size of up to ∼103 to 10
7 records, which is still infeasible for

developers to manually sift through. In comparison to using DD

alone, BIGSIFT reduces the fault localization time (as much as 66×)

by pruning out input records that are not relevant to faulty outputs.

Further, our trace overlapping heuristic decreases the total debugging

time by 14%, and our test memoization optimization provides up to

26% decrease in debugging time. Indeed, the total debugging time

taken by BIGSIFT is often 62% less than the original job running

time per single faulty output. In software engineering literature, the

debugging time is generally much longer than the original running

time [11, 16, 51].

The rest of the paper is organized as follows. Section 2 provides

a brief introduction to Apache Spark. Section 3 describes a moti-

vating example. Section 4 describes the design and implementation

of BIGSIFT. Section 5 describes evaluation settings and the corre-

sponding results. Section 6 discusses related work.

2 BACKGROUND: APACHE SPARK
Apache Spark [2] is a widely used large scale data processing plat-

form that achieves orders-of-magnitude better performance than

Hadoop MapReduce [1] for iterative workloads. BIGSIFT targets

Spark because of its wide adoption and support for interactive ad-hoc

analytics. The Spark programming model can be viewed as an ex-

tension to the Map Reduce model with direct support for traditional

relational algebra operators (e.g., group-by, join, filter) and iterations.

Spark programmers leverage Resilient Distributed Datasets (RDDs)

to apply a series of transformations to a collection of data records

(or tuples) stored in a distributed fashion e.g., in HDFS [43]. Calling

a transformation on an RDD produces a new RDD that represents

the result of applying the given transformation to the input RDD.

Transformations are lazily evaluated. The actual evaluation of an

RDD occurs when an action such as count or collect is called.

Internally, Spark translates a series of RDD transformations into a

Directed Acyclic Graph (DAG) of stages, where each stage contains

some sub-series of transformations until a shuffle step is required

(i.e., data must be re-partitioned). The Spark scheduler is responsible

for executing each stage in a topological order, with tasks performing

1 val log = "s3n://xcr:wJY@ws/logs/weather.log"
2 val split = sc.textFile(log).flatMap{s =>
3 val tokens = s.split(",")
4 // finds the state for a zipcode
5 var state = zipToState(tokens(0))
6 var date = tokens(1)
7 // gets snow value and converts it into millimeter
8 val snow = convertToMm(tokens(2))
9 //gets year

10 val year = date.substring(date.lastIndexOf("/"))
11 // gets month / date
12 val monthdate= date.substring(0,date.lastIndexOf("/")-1)
13 List[((String , String) , Float)](
14 ((state , monthdate) , snow) ,
15 ((state , year) , snow)
16 )
17 }
18 val deltaSnow = split.groupByKey().map{ s =>
19 val delta = s._2.max - s._2.min
20 (s._1 , delta)
21 }
22 deltaSnow.saveAsTextFile("hdfs://s3-92:9010/output/")
23 def convertToMm(s: String): Float = {
24 val unit = s.substring(s.length - 2)
25 val v = s.substring(0, s.length - 2).toFloat
26 unit match {
27 case "mm" => return v
28 case _ => return v * 304.8f
29 }
30 }

Figure 1: Alice’s program that identifies, for each state in the
US, the delta between the minimum and the maximum snowfall
reading for each day of any year and for any particular year.
Measurements can be either in millimeters or in feet. The con-
version function is described at line 23.

the work of a stage on input partitions. Each stage is fully executed

before downstream dependent stages are scheduled. The action result

values are collected from the final output stage and returned to the

user. Apache Spark allows developers to cache results. Additionally,

by default Spark materializes intermediate results for fault tolerance.

In particular, at each shuffle step, all the intermediate results of a

current job are materialized before proceeding to the next stage.

3 MOTIVATING EXAMPLE
This section discusses a motivating example to elucidate the chal-

lenges of debugging DISC system workloads and the limitations of

DD and DP approaches in addressing this challenge.

Alice writes a Spark program to process a large dataset that

contains weather telemetry data of the U.S. over several years. She

wants to compute the delta between the minimum and the maximum

snowfall measurement in each state for (1) each day of any year and

(2) for each year. Data records are in CSV format: for example, the

following sample record indicates that on January 1st of Year 1992,

in the 99504 zip code (Anchorage, AK) area, there was 1 foot of

snowfall: 99504 , 01/01/1992 , 1ft .

To analyze the data, Alice develops the Spark program shown

in Figure 1. She starts projecting each base record into two records

(lines 3-17); the first representing the state, the date (mm/dd), and

its snowfall measurement, and the second representing the state,

the year (yyyy), and its snowfall measurement. She normalizes

the snowfall measurements using the function convertToMm (de-

scribed at line 23), which converts any units of feet to millimeters,

based on an assumption she makes about the data. She also uses a

function zipToState (line 5) to find the name of the state where

an input zip code resides.
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Figure 2: (a) shows how intermediate and final results are constructed using the transformations in Alice’s program. In (b), delta
debugging considers the initial scope of the fault-inducing input to span a complete dataset but it eventually finds the precise fault-
inducing input. In (c), data provenance over-approximates the set of fault inducing input records because of the groupByKey oper-
ation in the initial program.

Next, she groups the key value pairs using a groupByKey op-

erator in line 18, yielding records that are grouped in two ways (a)

by state and day and (b) by state and year. At lines 18-21, Alice

finds the delta between the maximum and the minimum snowfall

measurements for each group and saves the final results to an HDFS

directory. A snippet of the execution is shown in Figure 2(a), where,

on January 1st, the snowfall level delta in Alaska (AK) is 21251
millimeters, and in year 1992, the snowfall level delta in Alaska is

274.3 millimeters.

1 def test(key:String, delta: Float) : Boolean = {
2 delta < 6000
3 }

Figure 3: Test function checking the validity of each output
record—all snowfall deltas greater than 6000 millimeter are sus-
picious or incorrect.

Suppose that Alice writes a test function to check the validity

of her output records, as seen in Figure 3. In her test function, she

assumes that any delta snowfall level greater than 6000 millimeters

(6 meters) is extremely suspicious, such as the delta snowfall of

21251. However, once such outlier snowfall levels are identified, it

is challenging for Alice to derive (by inspection) the precise set of

input records leading to such faulty outputs, because the program

involves computing both min and max over a unit conversion, making

it hard to write a data cleaning filter upfront, as snowfall levels could

vary greatly.

The goal of BIGSIFT is to identify the precise input records lead-

ing to each faulty output record. In this case, the faulty output records

are caused by an error in the unit conversion code, because the de-

veloper could not anticipate that the snowfall measurement could be

reported in the unit of inches and the default case converts the unit

in feet to millimeters (line 28 in Figure 1). Therefore, the snowfall

record 99504 , 01/01/1993 , 70in is interpreted in the unit

of feet, leading to an extremely high level of snowfall, like 21366
mm, after the conversion. In this case, BIGSIFT finds the minimum

set of failure-inducing records: 99504 , 01/01/1992 , 1ft

and 99504 , 01/01/1993 , 70in , from which the unit mea-

surements can be inspected, prompting a correction in the

convertToMm function.

Limitations of Delta Debugging. Delta Debugging (DD) addresses

the problem of isolating failure-inducing inputs by repetitively run-

ning a program with different sub-configurations of input. DD

splits the original input into two halves using a binary search-

like strategy and re-runs them. If one of the two halves fails,

DD recursively applies the same procedure for only that failure-

inducing input configuration. On the other hand, if both halves

pass, DD tries different sub-configurations by mixing fine-grained

sub-configurations with larger sub-configurations (computed as

the complement from the current configuration ). Under the as-

sumption that a failure is monotone—where C is a super set of

all input configurations, if a larger configuration c is successful,

then any of its smaller sub-configurations c ′ does not fail, i.e.,

∀c ⊂ C ( test(c) = � → ∀c ′ ⊂ c (test(c ′) � �)), DD returns a min-

imal failure-inducing configuration. The minimal failure-inducing

configuration cx means that removing any subset from cx no longer

fails: ∀δi ⊂ cx , test(cx − {δi }) � �.

One limitation of delta debugging is that it is a black box pro-

cedure that does not consider the semantics of underlying data

flow operators. In our running example, since the faulty output
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AK, 01/01, 21251 is over state AK and date 01/01 only, we

can easily conclude that the scope of failure-inducing input records

should be limited to the records with date 01/01 and a zip code

that exists in Alaska. However, delta debugging considers the entire

input dataset (Run 1) as the initial scope of potential fault-inducing

input, as it does not account for the semantics of the used data flow

operators and keys.

Limitation of Data Provenance. Data provenance (DP) is a well-

known technique in the database community for understanding the

relationship between the input (or intermediate) records and the

output records [6, 7, 17, 24]. For example, Titian is a data prove-

nance tool for Apache Spark that allows users to perform forward

and backward tracing of specific data records to understand the

generation and consumption of data records [28]. If a user requests

backward tracing for an output record, Titian identifies all the input

records responsible for generating the output record from a series of

transformations. As such, DP could identify a subset of the dataset

containing the failure-inducing inputs by backward tracing from the

faulty output(s).

Assume now that Alice uses Titian to perform backward tracing of

the faulty output record. Titian creates correspondences from the in-

termediate records AK , 01/01 , 304.8 AK , 01/01 , 21336

AK , 01/01 , 245 AK , 01/01 , 85 to a single output

AK , 01/01 , 21251 , as seen in Figure 2(c). Though only two

of the input records (the minimum and the maximum value) con-

tributed towards the final output across groupByKey and map,

DP over-approximates, by a significant amount, the scope of fault-

inducing records by simply assuming that all input records in the list

to groupByKey contributed to the output record.

4 APPROACH
BIGSIFT implements a unique combination of data provenance (DP)

and delta debugging (DD) to offer a toolkit for efficiently debugging

DISC system workloads. It accepts a DISC program, an input dataset,

and a user-defined test function that distinguishes the faulty outputs

from the correct ones. It then executes the DISC program, and uses

the test function to identify faulty output records. The debugging

process is performed in three phases.

Phase 1 applies test driven data provenance (TP) to remove in-

put records that are not relevant for identifying the fault(s) in the

initial scope of fault localization. BIGSIFT re-defines the notion of

data provenance by taking insights from predicate pushdown [44].

By pushing down a test oracle function from the final stage to an

earlier stage, BIGSIFT tests partial results instead of final results,

dramatically reducing the scope of fault-inducing inputs. In Phase

2, BIGSIFT prioritizes the backward traces by implementing trace
overlapping, based on the insight that faulty outputs are rarely inde-

pendent i.e., the same input record may propagate to multiple output

records through operators such as flatMap or join. BIGSIFT

also prioritizes the smallest backward traces first to explain as many

faulty output records as possible within a time limit. In Phase 3,

BIGSIFT performs optimized delta debugging while leveraging

bitmap based memoization to reuse the test results of previously

tried sub-configurations, when possible. Eventually, BIGSIFT out-

puts the smallest subset of input records responsible for the test

Algorithm 1 BIGSIFT’s algorithm

local_threshold : an input size threshold on jobs for local computation
test (c) runs the program on configuration c and checks whether it fails the test,
test (c�) =� and test (∅) =�

testCombiners(t, I ) filters the partial result that fails test t
f aults : a minimum set of fault inducing input records

split (c, n) splits the input c into n configurations

1: if combinersForLastOperation then � Phase I: Test Pushdown

2: f aulty_output = testCombiners(test, input )
3: else
4: f aulty_output = testOutput (test, input )
5: CL ← дetLineaдe(f aulty_output ) � Phase I: Data Provenance

6: CL = Smallest JobF ir st (CL ) � Phase II: Smallest Job First
7: while !CL .isEmpty() do
8: if |CL | > 1 then
9: CL, cI NT = over lap(CL ) � Phase II: Trace Overlapping

10: f aults .push(ddmin2(cI NT , 2))
11: f aults .push(ddmin2(CL .pop(), 2))
12: f aults .push(ddmin2(CL .pop(), 2))
13: else
14: f aults .push(ddmin2(CL .pop(), 2))
15: return f aults
16: function ddmin2(c�, n) � Phase III: Delta Debugging

17: C ← split (c�, n)
18: (Δi , testResult ) = submit Job(C)
19: if testResult == � then
20: return ddmin2(Δi , 2)
21: for Δi ∈ C do
22: C[i] = c� − Δi
23: (Δi , testResult ) = submit Job(C)
24: if testResult == � then
25: return ddmin2(Δi ,max (n − 1, 2))
26: if n < |c� | then
27: return ddmin2(c�,min( |c� |, 2n))
28: else
29: return c�

30: function submit Job(C )
31: testResult = �
32: for Δi ∈ C do
33: if isT estMemoized (Δi ) then
34: testResult = дetT estResult (Δi )
35: else � Phase III: Adaptive Scheduling
36: if |Δi | > local_threshold then
37: (Δi , testResult ) = runOnSpark (test, Δi )
38: else
39: (Δi , testResult ) = runOnLocal (test, Δi )
40: memoize(Δi , testResult ) � Phase III: Test Memoization

41: if testResult == � then
42: return (Δi , testResult )
43: return (∅, testResult )
44: function over lap(CL )

45: cI NT ← CL (0) ∩CL (1)
46: if test (CI NT ) == � then
47: CL (0) = CL (0) − cI NT
48: CL (1) = CL (1) − cI NT
49: return (CL, cI NT )

50: return (CL, ∅)

failure of each faulty output. The debugging process of BIGSIFT is

illustrated in Algorithm 1.

4.1 Phase I: Test Driven Data Provenance
In test-oracle based debugging such as DD, faulty outputs are distin-

guished from correct ones using a user-defined test function. There-

fore, we could invoke a backward tracing query on each faulty output

using a data provenance technique Titian to reduce the initial scope

of fault-inducing inputs [28]. We describe how to use basic data

provenance to identify an initial scope, and then how BIGSIFT ex-

tends it for test-oracle based debugging.

Data Provenance. When a Spark job is submitted, its workflow is

generated in the form of a DAG. Titian takes in that DAG and inserts

tracing agents in the workflow. These tracing agents modify the data

records by attaching an identifier to each individual record. At every

stage boundary, these ids are collected and added to an agent table
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Figure 4: A logical trace plan that recursively joins data lineage
tables back to the input lines.

that maintains mappings between the input and output records. When

a tracing query is issued, Titian recursively joins the agent tables

as shown in Figure 4, which illustrates a trace from output record

AK , 01/01 , 21251 (id 0) to the records in the input file

that derived it. Details on DAG instrumentation, distributed join of

tracing tables, and API usage can be found in our previous paper [28].

For each faulty output, the corresponding fault-inducing input set

from Titian is stored in a queue, CL (line 5 in Algorithm 1).

Test Function Push Down. Spark applications comprise of hun-

dreds to thousands of tasks running in parallel on different partitions.

In the map-reduce programming paradigm, a combiner performs

partial aggregation for operators such as reduceByKey on the

map side before sending data to reducers to minimize network com-

munication. Since Phase I uses a user-defined test function to check

if each final record is faulty, our insight is that, during backward

tracing, we should isolate the exact partitions with fault-inducing

intermediate inputs to further reduce the backward tracing search

scope.

Because faulty intermediate data records could have been already

grouped together with non-faulty records from other partitions in an

aggregation operation, we use the approach of pushing down a test-

function to the earlier stage (i.e., combiner) to isolate fault-inducing

partitions. In the intermediate stage where a test function could be

moved to, BIGSIFT then determines which partitions are no longer

relevant to faulty outputs and therefore obviates the need of tracing

non-faulty partitions further.

Specifically, in Apache Spark, certain aggregation operators (e.g.,
reduceByKey) require a user to provide an associative and com-
mutative function as an argument. For a test function applied to these

operators, BIGSIFT can push-down the user-defined test function to

partitions in the previous stage to test intermediate results (line 2 in

Algorithm 1) if the following three conditions are met: (1) the pro-

gram ends with an aggregation operator (such as reduceByKey)

that requires an associative function f1; (2) f1 ◦ f2 is associative,

when f2 is a test function; and (3) f1 ◦ f2 is failure-monotone, which

is analogous to the monotonicity assumption of DD, meaning that

an inclusion of a failure-inducing intermediate record(s) in the parti-

tion produces a test failure, when combined with other intermediate

data from other partitions. If these three requirements are not met,

Figure 5: A decrease in the scope of potential fault-inducing in-
put when the test function is pushed down. The workflow com-
putes the sum of all the numbers in the input dataset.

1 sc.textFile(input)
2 .flatMap{s => s.split(",").map(r => r.toInt)}
3 .reduce( (a,b) => a+b )
4 .collect()

Figure 6: A Spark program that computes the sum of all the
numbers in the input dataset.

BIGSIFT rollbacks to using basic data provenance. Therefore, the

applicability of test-driven provenance optimization does not af-

fect debugging accuracy. Rather, when these conditions are met,

BIGSIFT can speed up debugging time.

When the three conditions are met, f1◦ f2 could be checked at each

partition before the shuffle stage as a combiner, identifying faulty

partitions early. For the individual partitions failing this combiner

test function, BIGSIFT restricts backward tracing search only on

those faulty partitions, significantly reducing the scope of potential

fault-inducing input records. On the other hand, if the monotonicity

property is not satisfied (which can be verified by testing the final

output), or none of the partitions fail the test function, BIGSIFT

rolls back to the default case of backward tracing using basic data

provenance.

Figure 5 contrasts data provenance without vs. with this push

down optimization on the program in Figure 6. This program com-

putes the sum of all numbers in the input dataset. It first splits each

line in the input into a list of numbers using flatmap and then uses

an add function as a UDF for the reduce operator. Suppose that a

user-provided test function checks whether the final output is greater

than zero. Spark automatically inserts a combiner by pushing the

test function result=>(result>0) to check the partial results

from the combiner. Figure 5(b) shows that BIGSIFT checks the in-

termediate results of Partition 1 (on which the test fails) and restricts

its backward tracing to only this partition, resulting in a significantly

smaller subset of records. On the other hand, Figure 5(a) shows that,

without this optimization, all partitions are considered for backward

tracing.

4.2 Phase II: Prioritizing Backward Traces
Phase II applies to the case when we have multiple faulty output

records to explain. It takes the set of backward traces as input and

employs two prioritization heuristics i.e., trace overlapping and
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smallest job first, based on the insight that multiple failure symptoms

could be caused by the same set of inputs. BIGSIFT prioritizes

backward traces to cover many faulty outputs within a time limit.

When there is only one faulty output, Phase II is skipped.

Smallest Jobs First. Given multiple backtrace lineages from Phase

I, BIGSIFT prioritizes the trace with the smallest number of potential

fault-inducing input records according to data provenance. This early

discovery of fault-inducing input records may help users revise their

code before other pending (larger) traces. Line 6 in Algorithm 1

sorts the backwards-trace queue in an ascending order.

Overlapping Backward Traces. Multiple faulty output records

may be caused by the same input records due to operators such

as flatMap or join, where a single data record can pro-

duce multiple intermediate records, leading to multiple faulty

outputs. For example, in Figure 7, a fault-inducing input record

99504 , 01/01/1993 , 70in generates more than one faulty

output records, i.e., AK , 01/01 , 21251 (Figure 7(a)) and

AK , 1993 , 21251 (Figure 7(b)). While the cardinality of

the individual backward trace from the faulty output is 4 and 3 re-

spectively, the overlap of the two traces contains only two input

records, leading to the two different faulty outputs (Figure 7(c)). The

benefit of this prioritization is twofold. First, BIGSIFT prioritizes the

common input records leading to multiple outputs before applying

DD to records that are pertinent to fewer faulty outputs. Second, the

intersection of two sets might help us to tighten the scope of DD

application, avoiding redundant work for the same failure-inducing

records.

To check the eligibility for this optimization, BIGSIFT explores

the DAG of the Spark program to find at least one 1-to-many or

many-to-many operator such as flatMap and join. The overlap is

performed right after Phase II’s “smallest job first”, as shown by line

9 in Algorithm 1. BIGSIFT overlaps the two smallest backward traces

(let’s say t1 and t2) from the sorted queue,CL , to find the intersection,

t1 ∩ t2 (line 45). If the test function evaluated over the execution of

t1∩t2 finds any fault, then DD is applied to t1∩t2 and the remaining

(potential) failure-inducing inputs t1 − t2 and t2 − t1 (lines 47-48).

Otherwise, DD is executed over both initial traces t1 and t2. If

any fault-inducing inputs are found in the overlap, there could be

potential time saving from not processing the overlap/intersection

trace twice. Conversely, this prioritization could waste time for

computing the overlap when the two backward traces do not overlap,

or when the overlap trace does not cause any faulty output.

4.3 Phase III: Optimized Delta Debugging
Based on the order prioritized by Phase II, BIGSIFT applies DD to

each backward trace (lines 16-29 of Algorithm 1). BIGSIFT pro-

vides a universal splitting function, which allows DD to deterministi-

cally split an input configuration into n sub-configurations (line 17).

Each sub-configuration is then sequentially submitted for execution

(line 18) until either a faulty sub-configuration is found (line 19), or

all the sub-configurations pass the test (line 21). In the former case,

DD is recursively called over the faulty sub-configuration. In the

latter instead, each sub-configuration is used to compute a comple-

ment (lines 21-22) which are then executed and tested (line 23). If

all the complements pass the test, DD either generates twice as many

sub-configurations as before or n (size of original configuration)

Figure 7: A decrease in fault-inducing input by overlapping
backward traces of two faulty outputs emerging from the same
fault-inducing input.

sub-configurations, which ever is smaller (line 27). It then starts

testing these sub-configurations as explained earlier. Otherwise, if

any one of the complement fails the test, DD starts exploring that

sub-configuration (line 25).

Re-running a program on a large dataset can be extremely expen-

sive. Next we describe two optimizations.

Bitmap Based Memoization of Test Results. In our running ex-

ample from Figure 2(b), Run 4 and Run 7 test the same input

configuration twice while applying delta debugging. DD is not capa-

ble of detecting redundant trials of the same input configuration and

therefore tests the same input configuration multiple times. To avoid

waste of computational resources, BIGSIFT uses a test results mem-
oization optimization. A naive memoization strategy would require

scanning of the content of an input configuration to check whether it

was tested already; such configuration content-based memoization

would be time consuming and not scalable. BIGSIFT instead lever-

ages bitmaps to compactly encode the offsets in the original dataset,

to refer to a sub-configuration.

The universal splitting function for DD is thus instrumented to

generate sub-configurations along with their related bitmap descrip-

tions. BIGSIFT maintains the list of already executed bitmaps, each

of which points to the test result of running a program on the in-

put sub-configuration. Before processing an input sub-configuration,

BIGSIFT uses its bitmap description to perform a look-up in the list

of bitmaps. If the result is positive, the test result for the target sub-

configuration is directly reused by the look-up. Otherwise, BIGSIFT

tests the sub-configuration and enrolls its bitmap and the correspond-

ing test result in the list (line 40 in Algorithm 1). This technique

avoids redundant testing of the same input sub-configuration and

reduces the total debugging time. BIGSIFT uses the compressed

Roaring Bitmaps representation to describe large scale datasets [34].

Adaptive Local Job Scheduling. When we investigate the debug-

ging time spent for each run in DD and the number of input records,

we discover that for a DD job small enough to be run on a single

machine (e.g., less than 5000 records), running it on a cluster is
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# Subject Programs Source
Input

Size

# of

Ops
Program Description Input Data Description

Fault

Location

S1 Movie Histogram PUMA 30 GB 4
Counts the number of movies in each rating category

using map, reduceByKey, and filter
Movies with corresponding

ratings from raters
Code

S2 Inverted Index PUMA 40 GB 5
Generates a word-to-document indexing of a text data

using flatmap, map, and reduceByKey
Text data with corresponding

file id
Code

S3 Rating Histogram PUMA 30 GB 4
Generates the frequency of each rating score from raters

using flatmap, map, and reduceByKey
Movies with corresponding

ratings from raters
Code

S4 Sequence Count PUMA 80 GB 5
Counts the occurrence of every 3-word sequence using

flatmap, map, and reduceByKey
Text data from Wikipedia

dump
Code

W1 Rating Frequency Custom 30 GB 4
Counts the number of ratings from each rater using

flatmap, map, and reduceByKey
Movies with corresponding

ratings from raters
Code

W2 College Student Custom 4 GB 4
Finds the average age of all the students per college year

using map and groupbykey
Student data with name, year,

and date of birth
Data

W3 Weather Analysis Custom 20 GB 4

Finds, in each state, the delta between the minimum and

maximum snowfall reading for each day of any year

and for any particular year using flatmap, map, and

groupbykey

Daily snowfall measurements

for every zipcode in feet and

millimeters

Data

W4 Transit Analysis Custom 20 GB 4

Finds the total layover time of all passengers spending

less than 45 minutes per airport and per hour using map,

filter, and reduceByKey

Passenger’s arrival and depar-

ture time along with the air-

port code and date

Code

Table 1: Subject programs with input datasets

unnecessary. BIGSIFT schedules a DD run on either the cluster or

on a local machine, as shown in lines 36-39 in Algorithm 1.

5 EVALUATION
We perform a wide range of systematic experiments to evaluate

BIGSIFT’s runtime performance and precision of pinpointing fault-

inducing input records compared against delta debugging and data

provenance alone. To further differentiate the performance benefits

from each optimization and prioritization, we design several versions

of BIGSIFT as seen in Table 2: BIGSIFT-T simply combines delta

debugging (DD) and test driven provenance (TP), BIGSIFT-O and

BIGSIFT-S enable trace overlapping and smallest job first respec-

tively in addition to leveraging both DD and TP. BIGSIFT-M applies

bitmap based memoization of test results. Finally, BIGSIFT enables

all optimization and prioritization heuristics. Our investigation ad-

dresses the following evaluation questions:

• How much improvement in the precision of fault-inducing

input records does BIGSIFT provide in comparison to data

provenance?

• How much improvement in the debugging time does BIGSIFT

provide in comparison to delta debugging?

• When a time limit is set for fault localization, what are the

benefits of trace overlapping and smallest jobs first prioritiza-

tion heuristics respectively?

Evaluation Environment. We use a cluster consisting of sixteen i7-

4770 machines, each running at 3.40GHz and equipped with 4 cores

(2 hyper-threads per core), 32GB of RAM, and 1TB of disk capacity.

The operating system is a 64bit Ubuntu 12.04. The datasets are all

stored on HDFS version 1.0.4 with a replication factor of 3. The

level of parallelism was set at two tasks per core. This configuration

allows us to run up to 120 tasks simultaneously. BIGSIFT currently

supports Apache Spark version 1.2.1 and leverages Titian to support

data provenance in Spark. The runtime overhead of lineage capture

from Titian is reported to be below 30% [28].

Name DD TP
Trace

Overlap
SJF MEM

BIGSIFT-T � � � � �

BIGSIFT-O � � � � �

BIGSIFT-S � � � � �

BIGSIFT-M � � � � �

BIGSIFT � � � � �

Table 2: BIGSIFT with various optimizations. TP, SJF, and
MEM stand for test driven provenance, smallest job first, and
test results memoization, respectively.

Subject Programs. We evaluate BIGSIFT using a comprehensive

set of subject programs and custom real-world workflows. We use

eight subject programs in total, four of which are adapted from

MapReduce PUMA benchmark [4]. PUMA benchmark provides

an extensive set of big data processing applications along with a

large-scale dataset for Hadoop MapReduce frameworks. We also

developed four custom Spark programs (W1) Rating Frequency,

(W2) College Student Analysis, (W3) Weather Analysis, and (W4)

Air Transit Analysis. Table 1 shows all the subject programs along

with their description. All subject programs except W2, W3, and W4

use the dataset provided by PUMA Benchmark. In W2, W3, and W4

we generate our own datasets using data generation scripts whereas

W1 uses the PUMA dataset.

Test Functions. Each of the subject programs is also accompanied

with a test function that checks for the correctness of each output

record. This is analogous to writing an assertion or a unit test case

in software engineering. Knowing the validity of each output record

does not necessarily mean that a user can identify a minimum sub-

set of failure-inducing input records. For most programs, the test

function checks if individual output records are within valid ranges.

For example, the test functions for S3 and S4 check that the count is

positive for each rating and for 3-word sequences respectively. As

another example, the test function for W2 checks that the average

age of students of each college year is between 16 and 26.
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(a) S1: Movie Histogram
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(b) S2: Inverted Index
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(c) S3: Rating Histogram
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(d) S4: Sequence Count
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(e) W1: Rating Frequency
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(f) W2: College Students
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(g) W3: Weather Analysis
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(h) W4: Transit Analysis

Figure 8: Performance comparison

Seeding Faults. The subject programs and their corresponding

datasets used to evaluate BIGSIFT do not contain any faults. There-

fore, we either seed faulty data records in the input dataset or inject

programming errors in the subject program’s code. These two types

of faults in our experiments underline the important distinction be-

tween data cleaning and debugging. Outliers or ill-formatted data

records may be localized by intelligent data cleaning techniques;

however, such data cleaning techniques cannot handle situations

where the notion of faulty data keeps changing, depending on an ap-

plication coding error. Given a test function, BIGSIFT not only finds

inconsistently formatted records in the input data but also isolates

cleanly formatted records interacting with faulty code, resulting in

faulty outputs. The last column shows whether a fault is injected in

data vs. code.

To inject faulty data, we select a random input record and modify

it differently for each input dataset. For example, in the case of

weather telemetry data, we randomly pick a single input record and

replace the value of the snow measurement with the value in the unit

of inches. This fault affects the final output of W3 and fails a check

that the delta snowfall reading should not exceed 6000 millimeters.

Similarly, in the college student data analysis W2, the date of birth

for a randomly selected student is mutated to the date “0/0/0”, which

leads to a test failure.

We introduce code faults by modifying program logic—i.e., code

faults are introduced in the user-defined function of a data transfor-

mation operator such that the program behaves differently for certain

intermediate data records. For example, in S4, the map transforma-

tion is modified, so that whenever two 3-sequence words “He has

also” and “Romeo and Juliet” appear together in a line, the count

of “He has also” is replaced with -99999. Similarly, in the subject

program W4, an injected code fault affects a small set of interme-

diate records leading to a wrong value for the delta between the
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Figure 9: Fault localizability comparison
arrival and departure time of a passenger. For this case, the input

data do not contain any data format anomaly or outliers. Six out

of our eight subject programs contain code faults that cannot be

debugged by data cleaning techniques because the notion of unclean

data is dependent on coding faults.

5.1 Fault Localizability
To evaluate the ability to precisely localize fault-inducing input

records, we measure the final size of the fault-inducing inputs from

BIGSIFT. We also compare test-function driven data provenance

(TP) with using data provenance (DP). The results are presented

in Figure 9. The x-axis represents the subject programs, while the

y-axis measures the number of fault-inducing input records from

BIGSIFT, DP, DD, and TP for each program. In almost all cases,

data provenance over-approximates the fault-inducing input records,

stopping at the order of 103 to 10
7 records, which is infeasible for

programmers to manually sift through. For example, in program

W2, DP is not able to localize fault-inducing input records beyond
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(b) S2: Inverted Index
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(c) S3: Rating Histogram
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(d) S4: Sequence Count
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(e) W1: Rating Frequency
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(f) W2: College Student
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(g) W3: Weather Analysis
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(h) W4: Transit Analysis

Figure 10: Reduction in the number of runs

15 million records. The poor localizability of DP is due to the use

of groupByKey where the number of unique keys are only four

possible keys, which results in over-approximating the scope of

fault-inducing input records. On the other hand, we leverage test

function push down in TP, when applicable, to reduce the size of

fault-inducing input to a few thousand records (e.g., in S1 and S3) by

identifying faulty partitions (see dotted bars in Figure 9). BIGSIFT

leverages DD to continue fault isolation after TP, achieving even

higher accuracy.

5.2 Debugging Time
To evaluate the performance improvement of BIGSIFT, we compare

the total debugging time of BIGSIFT against the baseline delta de-

bugging (DD) and data provenance (DP). At every single iteration

of DD, we log three metrics—the number of program runs (i.e.,
iterations), the number of the fault-inducing input records, and the

corresponding time span. These metrics help us analyze the runtime

behavior at a fine-grained level. We then apply BIGSIFT on the same

input data to localize the precise failure-inducing input records.

Figure 8 shows the performance improvement in BIGSIFT com-

pared to original DD. The x-axis represents the total debugging

time in seconds and the y-axis represents the number of localized

fault-inducing input records. For example, in Figure 8(d), BIGSIFT

takes 208 seconds to find the seeded fault, whereas DD takes 13772

seconds. DP stops after finding 23411 fault-inducing records in 398

seconds but cannot localize further from there. Comparison with DD

shows that BIGSIFT enhances the debugging time by 66X. Further

analysis shows that by applying test function driven data provenance

(TP), BIGSIFT reduces the initial scope of fault-inducing records

from more than 1 billion to just 15 records (dotted horizontal line)

in 208 seconds, whereas DD takes 12395 seconds to achieve the

same reduction. This significant decrease can be also seen in the

Running Time (s) Debugging Time (s)
Program Original Job DD BIGSIFT Improvement

S1 56.2 232.8 17.3 13.5X

S2 107.7 584.2 13.4 43.6X

S3 40.3 263.4 16.6 15.9X

S4 356.0 13772.1 208.8 66.0X

W1 77.5 437.9 14.9 29.5X

W2 53.1 235.2 31.8 7.4X

W3 238.5 999.1 89.9 11.1X

W4 45.5 375.8 20.2 18.6X

Table 3: Fault localization time improvement

other plots of Figure 8, as a steep drop till the dotted horizontal line,

compared to the slow and steady elimination from DD marked in

black. Figure 10 represents the number of runs required to perform

fault localization. Figure 10(d) shows the result on S4. BIGSIFT

takes just 7 runs to reach the minimum fault-inducing records, while

DD takes 49 runs to achieve the same.

Table 3 shows the overall reduction in debugging time in BIGSIFT

in comparison to DD. Overall, BIGSIFT provides from up to a 66X

speed up in the total debugging time, in comparison to DD. In the

case where TP does not significantly reduce the size of the initial

fault-inducing input, the speed up is 7.4X. Interestingly, the time
taken for automated debugging of a singly faulty output in BigSift

on average is 62% less than the time taken for a single run on the
entire data (Columns Original Job vs. BIGSIFT). With only up to

30% overhead incurred by Titian for lineage capture [28], BIGSIFT

dramatically reduces the scope and cost of iterative fault localization,

by leveraging the lineage mappings.

The reason behind this feasibility of automatic debugging is that,

in many subject programs, BIGSIFT reduces the scope of fault-

inducing input records by testing partially-aggregated results such
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that the later time spent on repetitive fault isolation in DD could be

much smaller than the original time taken for the first run on the

entire data. In fact, our result suggests that automated debugging can

be brought to a reality more easily for data flow programs running

in the DISC environments than other types of traditional C, C++,

or Java applications, because debugging DISC workloads provide

unique opportunities for systems-level optimizations.
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Figure 11: Fault localization time of BIGSIFT and DD for S1
w.r.t the location of seeded fault in input data.

Impact of Fault Location. While applying DD, the location of a

faulty input record affects the total debugging time, because DD

needs to test two sub-configurations sequentially at every iteration.

If the first of the two always fails the test, DD will focus its search

on the first one. Therefore, both DD and BIGSIFT may increase

debugging time, if a fault-inducing record is located near the end of

input data.

To evaluate the impact of fault-inducing input location on debug-

ging time, we compare BIGSIFT with DD while varying the location

of a fault-inducing input. Figure 11 summarizes the results where the

x-axis represents the location of a fault (e.g., 20% denotes that the

fault is at one-fifth of the data) and the y-axis represents debugging

time. When the location of fault-inducing input is changed from

the start to the end (0% to 100%) with the increment of 20%, the

debugging time of BIGSIFT increases from 10.2 seconds to 23.8

seconds for subject program S1. We also observe a similar trend in

DD when the location of a fault is near the end of the input data.

Effects of Test Function Push Down. To evaluate the effects of test

function push down (TD), we compare BIGSIFT with TD disabled

vs. TD enabled. In the TD enabled version, BIGSIFT pushes down a

user-defined test function to each individual partition to test partial

results. Our evaluation targets subject programs whose last operator

is reduceByKey (i.e., programs S1, S2, S3, S4, W1, and W4). For

subject programs W2 and W3, the UDF of the last operator is not

associative. For example, in W2, the last transformation computes

the average of each group. Computing an average is a non-associative

operation; therefore, TP becomes basic data provenance.

Figure 12 illustrates how BIGSIFT completes fault localization

faster than BIGSIFT without TD. In subject program S1 (Fig-

ure 12(a)), BIGSIFT takes 17 seconds to localize fault-inducing input

records, 33% less than BIGSIFT with TD disabled. By testing partial

results and applying DP afterwards on faulty partitions, BIGSIFT

reduces the scope of fault-inducing input to just 350 records, while

disabling TD reduces the scope to 91308 records.
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Figure 12: Effect of test function push down (TD).

5.3 Debugging Program Faults
As BIGSIFT is built on DD, by construction, it has the following

characteristics:

• BIGSIFT does not enumerate all possible explanations. In-

stead, it finds a single minimum subset responsible for pro-

ducing the same test failure. In other words, if there are two

possible explanations of failure-inducing inputs, it finds one

not both.

• BIGSIFT only guarantees to produce the same test failure

when applying the given test function to the resulting set of

fault-inducing input records. It may not produce the same

faulty output value as the original failing run on the entire

input.

• BIGSIFT is extremely beneficial for the case of finding a
needle in a haystack. i.e., both fault-inducing input and faulty

output occur very rarely. Such debugging scenario is generally

the most difficult case in software engineering, as develop-

ers cannot easily find a small, manageable size of data to

reproduce the same failure symptom.

To manifest these strengths and limitations empirically, we design

an experiment where we inject four different coding faults in subject

program W4. These coding faults interact with a different amount of

input records and produce different numbers of faulty output records

in the final result. We compare performance and fault localizability

with DD, DP, and the original running time.

The program W4 calculates the total transit time of all passengers

who spend less than 45 minutes at each airport grouped by every

hour. The input dataset used by the program is completely clean

i.e., the dataset is free from any kind of formatting anomalies or

outliers. The four different versions of W4 are listed in Table 4.

529



Automated Debugging in Data-Intensive Scalable Computing SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Program Original Faulty Data Debugging Time(s) Fault Localization

Versions Job Time Outputs Affected BIGSIFT DP DD BIGSIFT vs. Job Time BIGSIFT DP DD Improvement

W4-1 48.8 1020 555464920 12442.0 19.5 >12 hr 255X 1020 283790715 1020 2.8x105X

W4-2 46.6 367 37642315 2658.5 9.3 >12 hr 57X 367 56789568 367 1.6x105X

W4-3 45.5 170 33320879 1144.1 8.8 >12 hr 25X 170 43318865 170 2.6x105X

W4-4 46.5 1 1 8.5 8.4 431 0.18X 1 84948 1 8.5x104X

Table 4: Performance and fault localization of BIGSIFT on 4 versions of subject program W4 each with difference coding fault.

val diff = input.map{ data =>
val arr_min = getMinutes(data._2)
val dep_min = getMinutes(data._3)
var timediff = dep_min - arr_min
//Branch removed to inject code fault

- if(timediff < 0 ){
- timediff = 24*60 + timediff
- }

timediff
}

Figure 13: A branch is removed in subject program W4 to inject
a code fault

We count the number of faulty output records using differential

testing by comparing the final results of the faulty version against

the original program. Depending on code faults, the number of faulty

outputs ranges from 1 to 1020 faulty outputs (Faulty Outputs).

We conservatively estimate the number of faulty input records by

profiling individual input records exercised by the faulty code region.

This number varies from a single record to several million records

(Data Affected). Figure 13 shows an example code fault from

program W4-3 that removes a code fragment, re-adjusting the transit

period over midnight. When there are multiple faulty output records,

we run BIGSIFT and DD for each faulty output record in iteration.

Table 4 summarizes the experiment results.

Consider the program version W4-1 that touches 555 millions

input records and then generates 1020 faulty outputs. The entire pro-

cess for debugging all 1020 faulty outputs takes 12442 seconds and

the total time is 255X of the original job time. While the code fault

touches 555 million input records, BIGSIFT finds only 1020 faulty

inputs, each of which corresponds to reproducing the test failure of

a single faulty output. It is because the goal of Delta Debugging is

to find a minimum set of fault-inducing records that can reproduce

each test failure, not to enumerate all possible explanations for each

failure.

Nevertheless, BIGSIFT still performs better than DD which will

take an estimated 4 days (≥ 100 hours) to find the equal number of

fault-inducing inputs. In our experiments, we use a cut-off time of

12 hours for DD. DP finds more fault-inducing inputs than BIGSIFT

due to over-approximation, but the resulting set will also include

non-faulty input data. For version W4-4, BIGSIFT finds one and only

fault-inducing input record precisely in 8.5 seconds, which 82% less

than the original job time. This is the kind of a needle in a haystack
situation where existing techniques take a very long time to debug.

DP takes 8 seconds but fails to localize the fault-inducing input after

reaching 84K records. The result shows that BIGSIFT performs well

in terms of localizing fault-inducing input and reducing debugging

time, when both the affected inputs and faulty outputs are highly

infrequent, which is often the most challenging case of debugging.
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Figure 14: Benefits from Trace Overlapping (a) and Smallest
Job First (b)

In practice, a developer is unlikely to use BIGSIFT to provide

all failure-inducing input records for all individual faulty outputs

simultaneouly. Normally, a developer starts a debugging task with

investigating the root cause of one faulty output and then fixes

the source of the error before moving onto investigating the next

faulty output. Therefore, in practice, when the program version W4-

1 produces 1020 faulty outputs, we do not expect that a developer

will run BIGSIFT for 1020 iterations to find failure-inducing input

records for individual faulty outputs all at once. In fact, several faulty

output records (or several test failures) are often caused by a single

code fault or similar data faults. Therefore, a fix for a single fault may

remove more than one faulty output. The results summarized above

illustrate a very conservative and exceptional debugging scenario,

where a developer wants to find the source of all individual faulty

outputs at once without fixing the discovered errors along the way.

5.4 Optimization and Prioritization Effect
To assess the benefits from each optimization and prioritization

heuristic, we design four different versions of BIGSIFT as illustrated

in Table 2. Each variation was evaluated on all subject programs,

unless not applicable.

Trace Overlapping. We evaluate trace overlapping in BIGSIFT-O

to assess its prioritization benefit, when there are multiple faulty out-

put records. The benefits of overlapping the traces is debugging time

reduction by prioritizing the common failure-inducing inputs that

may be responsible for multiple faulty outputs. To assess whether

this prioritization achieves any time saving, we compare BIGSIFT-O

vs. BIGSIFT-T on subject programs W3, where we have 2 faulty

output records. This program includes a flatMap operator which

propagates a single faulty record into multiple faulty records. We

observe (1) the number of fault-inducing input records identified

within the same time limit and (2) the overall improvement in de-

bugging time. In Figure 14(a), BIGSIFT-O produces the exact same
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Figure 15: Benefits of Bitmap Based Memoization w.r.t fault lo-
calization time (a) and number of DD runs (b)

set of fault-inducing input records in 86% of the time, compared

to BIGSIFT-T, by saving the time to identify the 1158 overlapping

failure-inducing records twice. Figure 14(a) shows that BIGSIFT-O

incurs an initial cost of computing the intersection. However, the

remaining of the two overlapped traces do not contain the fault,

which saves the fault localization time by not applying DD on them.

The benefit of this prioritization is notable especially TD is not

applicable.

Smallest Jobs First. BIGSIFT-S prioritizes backward traces in a

smallest job first manner in an ascending order of the cardinality of

backward traces from data provenance. This prioritization improves

the coverage of faulty outputs when there are multiple faulty outputs

to explain within the same time limit. We compare the coverage

of the faulty outputs with BIGSIFT-S and BIGSIFT-T on program

W3 with 6 faulty output records, where BIGSIFT-T selects traces at

random.

Figure 14(b) illustrates the comparison. The y-axis represents the

number of faulty output records explained, and the x-axis represents

the time spent to perform these tasks. The reference lines at 50 and

100 seconds represent different possible time limits. By prioritizing

DD on the cardinality of the scope of potential failure-inducing input

records, BIGSIFT-S explains 5 faulty output records in W3, whereas

the baseline BIGSIFT-T explains only 2 faulty output records with

100 seconds as the time limit.

Bitmap Based Memoization of Test Results. When applying DD

in Phase III, in order not to test the same input sub-configuration

multiple times, BIGSIFT-M uses the test results memoization opti-

mization by maintaining a list of configuration descriptions (bitmaps)

and the corresponding test outcomes.

To evaluate the advantage of this optimization, we compare

BIGSIFT-M with BIGSIFT-T on program W3. Figure 15(b) shows

the comparison in terms of the number of DD runs where the x-axis

represents the number of jobs executed and the y-axis represents

the size of the fault-inducing input set. BIGSIFT-M eliminates 34

duplicate tests in Phase III by caching test results. BIGSIFT-M needs

59 runs to find the minimum fault-inducing input, whereas BIGSIFT-

T needs 93 runs to get the same result. The savings with respect

to DD runs is also reflected as reduction in the debugging time of

BIGSIFT-M. Figure 15(a) shows that BIGSIFT-M takes 89 seconds

as opposed to 121 seconds for BIGSIFT-T to localize the minimum

fault-inducing input. On program W3, test memoization reduces the

debugging time by 26%.

6 RELATED WORK
Data dependence analysis for fault detection. Detecting bugs in

the input by analyzing data dependence has been well explored both

in software engineering and databases. In the database field, data

provenance (also known as data lineage) is a tool used to explain how

query results are related to input data [17]. Data provenance has been

successfully applied both in scientific workflows and databases [6, 7,

17, 24]. RAMP [26] and Newt [36] add data provenance support to

DISC systems; both are capable of performing backward tracing of

faults to failure-inducing inputs. However, as our experiments show,

data provenance alone is often not able to compute the minimum

input failure-inducing set.

Ikeda et al. present provenance properties such as minimality and

precision for individual transformation operators to support data

provenance [25, 27]. However, their definition of minimality (mini-

mum provenance) is based on reproducing the same output record

rather than producing a faulty output. Therefore, their technique does

not guarantee a minimum set of fault-inducing inputs. In the domain

of network diagnosis, DiffProv analyses the differences between a

provenance tree leading to a bad event and the other leading to a

good event [10]. However, this approach requires a user to come

up with a pair of a correct input and a failure-inducing input, very

similar to each other. Finding such pair is extremely hard in DISC

applications, because a user must synthesize two different input

files, producing similar but not identical intermediate results in each

stage. Chothia et al. [12] is a provenance system implemented over

a differential dataflow system, like Naiad [40]. Their approach is

more focused on how to provide semantically correct explanations of

outputs through replay by leveraging the properties of a differential

dataflow system.

In software engineering, dynamic taint analysis utilizes informa-

tion flow analysis detect security bugs (e.g., [37, 41]) and is also

used to perform software testing and debugging (e.g., [14, 33]). For

example, Penumbra leverages dynamic taint analysis to automati-

cally identify failure-relevant inputs [15]. It requires fine-grained

tagging of program variables to track their flow in a program exe-

cution which can tremendously slow down the processing of DISC

applications. Furthermore, it also suffers from the same limitation of

over-approximating failure-relevant inputs and thus requires man-

ual investigation. Program slicing is another technique that isolates

statements or variables involved in generating a certain faulty out-

put [3, 23, 47]. These techniques use either static and dynamic

approaches to localize relevant code regions. Chan et al. identify

failure-inducing input data by leveraging dynamic slicing and origin

tracking [9]. Due to a large amount of data in DISC, tracing input

records over program statements would be costly. BIGDEBUG is

an interactive debugger for Spark [20–22]. Just like any interactive

debuggers such as gdb, it is left to the developer to control the debug-

ger to identify the root cause of errors. On the other hand, BIGSIFT

performs automated debugging, when a test function is provided.

BIGDEBUG’s crash culprit feature uses basic data provenance to find

the subset of input data causing a crash. BIGSIFT overcomes this

very limitation of over-approximating crash-inducing input records
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using data provenance only by leveraging delta debugging, test-

function push down, and other optimizations in tandem. A technique

similar to test-function push down was previously used in [30] in

the context of improving program re-execution performance after a

bug fix.

Automated debugging through systematic experiments. Delta

debugging is a well known technique for finding the minimal failure-

inducing input that causes the program to fail [51], and has been

used for a variety of applications to isolate the cause-effect chain

or fault-inducing thread schedules [11, 16, 50]. As stated earlier,

DD requires multiple executions of the program, which alone, is

not tractable for DISC system workloads. HDD tries to minimize

the number of executions involved in DD under the assumption that

the input is in a well defined hierarchical structure [39]. In the DD

split phase, HDD eliminates invalid configurations resulting in fewer

runs. Thus HDD can reduce debugging time for hierarchically struc-

tured input data such as a HTML or XML document. In our context,

this assumption rarely holds because the input dataset is often not

hierarchically structured.

Intervention-based explanation Systems. Several systems have

recently addressed the limitations of traditional data provenance

to explain anomalous results by computing subsets of the lineage

having an “influence" on the outlier result. Systems of this category

delete candidate solutions, i.e., groups of tuples, from the input and

evaluate whether the outlier has changed. This process is called

intervention and it is iteratively repeated in order to find the most

influential groups of tuples, usually referred to as explanations [38,

42, 48]. Meliou et al. pioneer this research area by studying causality

in the database area. They identify tuples, seen as potential causes,

that are responsible of answers and non-answers to queries [38].

To pursue this task, they introduce the degree of responsibility to

measure how responsible these tuples are. Scorpion finds outliers in

the dataset that have the most influence on the final outcome [48].

It restricts itself to queries with aggregates over singles tables (i.e.,
no joins are involved). Carbin et al. solve the similar problem of

finding the influential (critical) regions in the input dataset that have

higher impact on the output using fuzzed input, execution traces,

and classification [8]. Roy et al. mix intervention with causality

to overcome the limit of Scorpion in generating explanations over

a single table only [42]. Finally, Data X-ray [46] extracts a set of

features representing input data properties and summarizes the errors

in a structured dataset. It considers the properties of data only, and

does not reason about how a given program takes the input records

and outputs faulty output records.

The goal of these explanation systems is similar to ours. While

they focus on finding tuples that maximize the influence over a set

of records of interest, our goal is to generate the minimal failure-

inducing records. Different from BIGSIFT, these systems target

specific set of queries and structured data, and therefore are not

applicable to generic programs containing, for example, arbitrary

UDFs. Furthermore, these approaches are commonly coupled with a

DBMS, which hence limit their scalability.

Data cleaning. Input fault localization over structured data is related

to the field of data cleaning. In traditional data cleaning, a set of

specific user-defined rules is used to determine a set of constrains

determining data errors when violated [13, 19, 29, 45]. In contrast

to BIGSIFT, these approaches are independent from any subject

program and its test function. The drawback is that defining all

possible input data errors upfront is a daunting task even for a domain

expert. Additionally, rule systems are not scalable for debugging

purposes because they mostly run on centralized servers (a notable

exception being [32]).

7 CONCLUSION AND FUTURE WORK
We are in the early days of debugging big data analytics. This paper

presents the first automated debugging toolkit that combines insights

from both data provenance in the database systems community and

iterative systematic fault isolation in the software engineering com-

munity. Our experiments show automated debugging can be done

in a scalable and precise manner by leveraging the semantics of

data flow operators, the properties of data partitioning, and test data

provenance, to reduce the scope of failure-inducing records up front,

before initiating an optimized delta debugging.

Our experimental results highlight and motivate further opportu-

nities for big data debugging. For example, finding failure-inducing

inputs is just the beginning, but it is important to generalize the

characteristics from the resulting set of failure-inducing inputs to

automatically construct a data cleaning program. As another exam-

ple, to identify failure-inducing code regions to be repaired, we must

contrast the coverage profile of failure-inducing inputs against the

coverage profile of success-inducing inputs using techniques such

as spectra-based fault localization [31]. Additionally, we seek new

cost-based optimizations for DISC systems that gather statistics at

runtime to optimize repetitive DD workloads.
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